
As integrated circuit technologies advance

toward higher performance, greater densities,

and increasing system complexity, CAD tools

and design methodologies struggle to keep pace.

Managing the formidable complexity of the

design process is one of the main challenges to

IC design. Disseminating design reuse is central

to bringing the design effort’s complexity back

to a manageable size. Effective reuse, though,

takes more than just gathering predesigned com-

ponents in a library. Reuse-oriented policies and

strategies must permeate the entire design

process, from the methodologies themselves to

the final designs.

In this article, we provide a brief overview of

the state of the art in design reuse for digital sys-

tems. We also discuss the challenges posed to

this discipline by the recent trend toward inte-

grating processor cores in high-volume appli-

cation-specific integrated circuits.

Design reuse, particularly in the core-based

system-on-chip (SOC) design era, is no longer a

discipline in isolation. Reuse cannot be fully

separated from simulation and verification, esti-

mation, synthesis, or test. For example, the

“Design Section” of the 1999 edition of the Inter-

national Technology Roadmap for Semiconduc-

tors emphasized the need for synthesis

technology to support the reuse of predesigned

blocks with surrounding synthesized logic, thus

facilitating intellectual property (IP) reuse.1 The

need for new levels of abstraction to support

efficient system-level early design-space explo-

ration, synthesis, and simulation and verifica-

tion is yet another example of a synergy

increase across CAD areas. Early performance

estimation is also important so that top-down

design methodologies can correctly evaluate

design decisions at high abstraction levels, such

as at the system or architectural level. Without

good estimation techniques, top-down design

of deep submicron technologies may be

impractical, and CAD tools developed for such

design would be useless. The semiconductor

and electronic-design-automation (EDA) indus-

tries must successfully leverage several decades

of accumulated investment in hierarchical, top-

down design methodologies. Finally, standard-

ization—namely, for system descriptions and

portable synthesis library formats—is yet anoth-

er critical issue in SOC design.1

Figure 1 shows the main industry players for

SOC, field-programmable design.

Reuse-oriented design, verification,
and test

We now consider two representative contri-

butions for creating highly reusable compo-

nents and assisting the reuse process. The first

contribution typifies the traditional function-spe-

cific, hardware-only paradigm; the second con-

siders larger-scale, field-programmable systems.

General-purpose VHDL-based reuse
Preis et al. proposed a domain-independent,

VHDL-based reuse methodology for a hypertext-

based reuse environment.2 At the core of this

A Survey of
Digital Design Reuse

Design Reuse

98

The authors survey recent advances in digital

design reuse. They stress the need for effective

strategies that accommodate reuse throughout

the entire design process.

Margarida F. Jacome
The University of Texas at Austin

Helvio P. Peixoto
Intel Corp.

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

approach is a library of hardware components

specially designed for reuse. Three fundamen-

tal pieces of information define each reusable

library component: the reuse documentation,

component model, and verification support.

Reuse documentation includes a checklist-

based reuse guideline to assist designers

through the reuse methodology steps for each

library component. Such steps include

■ refinement, through parameter specifica-

tion, of the reusable component model, to

meet design requirements;

■ functional verification, supported by built-in

unit test benches with standard test cases;

■ synthesis, automated by scripts; and

■ hardware testing, supported by built-in self-

test (BIST) structures, whenever appropriate.

A reusable component’s basic modeling

style is a model that can be fully parameter-

ized—one where parameters completely deter-

mine all functional and structural variants for

the component’s retargetable aspects. Such

parameterization may include

■ aspects of the component structure (insert-

ing, selecting, and arranging subcompo-

nents such as register files, data width, and

BISTs); and

■ aspects of the component functionality

(characterizing logic-level behavior by spec-

ifying active signal levels, or addressing

other higher-level functional issues such as

reset types and signal coding).

When the number of parameters in the com-

ponent exceeds a manageable size, Preis et al.

propose an alternative template-based model-

ing style. A template is a construction kit to

build complex models from base models that

can be fully parameterized. Checklists guide

99May–June 2001

Design environment for SOC architecture

Estimating
and budgeting

Specification
of system components

and interfaces

Verification
and

validation
TestS

yn
th

es
is

 a
nd

 c
om

pi
la

tio
n

F
lo

or
 p

la
nn

in
g

S
ta

nd
ar

di
za

tio
n

ef
fo

rt
s

(c
on

so
rt

ia
 a

nd
 a

lli
an

ce
s)

System-level
specification
and models

Silicon vendors

IP providers

EDA vendors

Figure 1. IP reuse can significantly affect design productivity, beginning with the critical

system-level design phase. Key players involved in system-on-chip design include

embedded application developers, electronic-design-automation vendors, intellectual

property providers, and silicon vendors, most of which are currently committed to

standardization efforts. The top box represents the fundamental tasks required during

early design-space exploration, and the myriad models needed to support such tasks.

the designer through the construction process,

but only serve to prevent or reduce composi-

tion errors; they do not guarantee correctness.

In the proposed methodology, simulation

supports verification,3 with a unit test bench

supporting each reusable component. For

components with models that can be fully para-

meterized, the test bench is also fully parame-

terized; the model’s parameters automatically

adapt simulation and validation to each possi-

ble instance of the reusable component (a com-

ponent instance is a component with a value

assigned to each of its parameters). Similarly,

for reuse components built using the template

approach, the unit test bench is also prepared

as a template. Preis et al. suggest concentrating

on highly reusable test benches (minimizing

work through reuse) rather than guaranteeing

that the test bench architecture will fit the needs

of all possible applications (maximizing accu-

racy and completeness).

Reuse-based rapid prototyping for signal
processing

To stress the importance of continuous prod-

uct improvement in meeting short development

schedules (three to 12 months), the Defense

Advanced Research Project Agency’s Rapid

Prototyping of Application Specific Signal

Processors (RASSP) program introduced the

Model of the Year Architecture (MYA) approach,

focusing on the complex evolution of large-scale

embedded signal-processing applications.4 The

MYA approach is an incremental refinement

methodology; rapid prototyping reuse process

and reuse libraries help develop Model of the

Year upgrades. When developing the MYA

approach, the RASSP program placed significant

emphasis on facilitating reusability and regular

low-cost technology upgrades, as well as on

developing a supporting base. This base includes

not only automation tools and reuse libraries but

also enterprise integration capabilities and stan-

dards. The basic MYA elements are

■ the functional architecture,

■ encapsulated library components, and

■ design guidelines and constraints.

The functional architecture specifies the

abstract architectural components and stan-

dard functional interfaces among these com-

ponents—that is, the manner in which the

component’s interfaces must be defined to

ensure that the design is upgradeable and to

facilitate technology insertion (moving from

very abstract models toward more specific,

detailed models that incorporate implementa-

tion technology issues). The functional archi-

tecture does not specify the signal-processing

architecture’s topology or configuration; nor

does it stipulate specific processor types or sys-

tem-level standards for interfaces external to

the processor. The functional architecture is

thus defined at a higher abstraction level—a

starting point in the requirements definition for

application-specific architecture selection. In

addition, this architecture enforces a standard

reference approach for selecting and imple-

menting open interfaces, and establishes guide-

lines for verification and test.

Libraries of hardware and software ele-

ments—encapsulated library components—

facilitate reuse and upgrades. Functional

wrappers, to support the abstract functional

architecture, encapsulate these architectural

reuse library components. Specifically, by hid-

ing or abstracting implementation details, these

functional wrappers ensure library element

interoperability and technology independence.

Finally, the design guidelines and con-

straints specify how to use the functional archi-

tecture framework. They describe the general

use of encapsulated libraries and provide pro-

cedures and templates to encapsulate new

library components.

Three abstraction levels of modeling are

used to define reuse library elements.

■ Performance, uninterpreted, and architectur-

al models provide sequence and timing-only

behavior for processor nodes, buses, and

interconnects by specifying the number and

type of processors and the type and topolo-

gy of the network. (Uninterpreted models

don’t actually execute the tasks that the

modeled application must perform; they

only specify the expected time to fulfill these

tasks, address general synchronization

issues, and so on.)

Design Reuse

100 IEEE Design & Test of Computers

■ Abstract behavioral models provide fully

functional behavior, including those at both

the algorithm level and the instruction-set-

architecture level.

■ Fully functional and interface models provide

full functionality at the signal level, and tim-

ing fidelity at the signal and clock level,

including register transfer level (RTL) and

logic models, which perform all computa-

tions in the same way as the final design.

Finally, the representation of architectural

elements as objects may include not only hard-

ware representations in the form of VHDL mod-

els but also the behavior defined by the

software libraries associated with the hardware.

The reuse-based rapid prototyping method-

ology starts with the creation and refinement of

dataflow graphs, which model the intended

behavior of the application’s data and signal

groups. These graphs drive both the architec-

ture design and the software generation for the

target signal processors. Specifically, each node

in the data flow goes to either software or hard-

ware. Software generation then provides exe-

cutable threads to be run on the selected digital

signal processors. Verification proceeds during

the many abstraction levels.

Some of these key ideas and concepts have

been successfully incorporated into commer-

cial products—for example, the ALTA tools of

Cadence and the Inventra from Mentor

Graphics. Synopsys and Mentor Graphics

recently created a partnership to develop a

reuse-based design methodology.5

Design reuse and high-level
synthesis

Several research groups have investigated

reuse to improve the quality of the designs pro-

duced by state-of-the-art high-level synthesis

tools. (The “Evolution of design reuse” sidebar

discusses the history of design reuse.) Some

recent efforts have focused on automating the

synthesis of interfaces between IP blocks

(reusable components). Here we discuss rep-

resentative contributions in these areas.

High-level library mapping
Jha and Duttproposed a high-level mapping

technique to let architectural and logic synthe-

sis tools directly reuse technology-specific RTL

data path components—in much the same way

as traditional logic synthesis tools map compo-

nents into standard cells.6 Jha and Dutt identified

RTL components, such as arithmetic-logic units

(ALUs) and register files, as good candidates for

RTL libraries. This was because designers often

hand-optimize or create these components using

module generators rather than the traditional

technology-mapping techniques implemented

within high-level synthesis tools.

Jha and Dutt developed and validated the

high-level library mapping technique using sev-

eral optimized ALUs drawn from different

libraries. The mapping draws on the function-

al specifications of the source component (one

of the reusable ALUs in the library) and the tar-

get component (the ALU under design). The

mapping derives from comparing these two

functional specifications with a canonical func-

tional specification of the ALU.

The canonical specification of an ALU or

other data path component is based on several

functions, each defining a relationship between

the component’s inputs and outputs. Given the

canonical ALU specification, each library com-

ponent is described by its corresponding subset

of canonical functions and by the Boolean rela-

tionship between the ports of the library com-

ponent and of the canonical component. Those

last relationships represent required glue logic.

The mapping algorithm has two main steps.

First, it implements the source ALU onto the

canonical ALU using only those functions pre-

sent in the target ALU. The algorithm performs

this implementation, using predefined mapping

rules, which also contain entries specifying the

connectivity between the ports of the source

and canonical ALUs and the necessary addi-

tional glue logic. The mapping process is for-

mulated as a dynamic programming problem

that incrementally constructs mappings of func-

tion subsets—partial solutions. The mapping

process completes when a set of rules is found,

one for each source function, that minimizes

the cost of extra hardware, measured in gate

count or delay. The algorithm’s second step

maps the canonical ALU onto the target com-

ponent—that is, connects their ports together.

101May–June 2001

Increasing data path reusability
High-level synthesis tools traditionally do not

directly consider physical design effects. The per-

formance predicted by such tools must be recal-

culated after the physical design performance

information of the RTL design is back-annotated

with timing information. In designing data path

circuits, for example, you might completely

resynthesize the data path by running the syn-

thesis tools again with the back-annotated phys-

ical design information. However, redoing

scheduling and allocation with the new physical

design information may generate a completely

different data path for which the previously

back-annotated physical design information is

useless.7 Similarly, retargeting an existing data

path to a new standard cell library may cause

suboptimal execution delays when the new

Design Reuse

102 IEEE Design & Test of Computers

The traditional requirement for a reusable design is
that the function it realizes is approximately duplicated
or is common to several applications. Arithmetic circuits,
such as adders and multipliers, are examples of com-
mon building blocks needed in many different applica-
tions. Components implementing standards such as an
Ethernet interface or an Integrated Service Data Network
protocol are also natural candidates for reuse across
multiple designs. Design evolution itself provides yet
another form of common functionality of major strategic
importance: Over time, groups of products are updated
and adapted to increase functionality or performance,
possibly taking advantage of new implementation tech-
nologies to increase their market competitiveness.1

The introduction of hardware description languages
(HDLs) led to a major leap in design reusability. The var-
ious forms of common design functionality could then be
represented in a technology-independent form that was
easier to understand and customize to specific applica-
tions. The subsequent HDL-based generations of high-
level synthesis and verification tools consolidated
functional reuse. They automated process retargetabili-
ty and facilitated the exploration of area, speed. and
power trade-offs in the physical implementation of the
reusable components. HDL-based tools let companies
compile libraries of technology-independent functions,
which could be reused in each new design generation.1

Most HDLs also provide built-in parameterization fea-
tures for creating reusable components that designers
can tailor to support different applications. For example,
you can use an N-bit adder or multiplier to achieve para-
meterization at the structural level. At the functional level,
you can design a modem that operates at several differ-
ent frequencies and signaling schemes; then you can tie
such variants to actual operating mode parameters
defined at the HDL level. Building designed-for-reuse,
parameterized components is difficult, but you can use

them in many applications, thus increasing the potential
return on your investment.

Since the arrival of HDLs, mainstream research in
design reuse has focused mostly on modeling and design
tools for creating highly reusable, function-specific com-
ponents and for assisting the reuse process. In the last few
years, though, the increasing importance of field pro-
grammability has irreversibly challenged this function-spe-
cific reuse paradigm. Indeed, if performance and
power-consumption requirements allow, you can use
microprocessors and field-programmable gate arrays to
directly implement most of the functionality of complex sys-
tems-on-chip (SOCs). Such field programmability gives
system developers valuable flexibility. For example, you
can create entire families or lines of products that share a
common hardware platform, with the various products dif-
ferentiated mainly, or completely, by features implement-
ed in software. Moreover, you can significantly reduce the
cost of accommodating changes in a product’s specifica-
tion. Reflecting the attractiveness of such solutions, field-
programmable systems are already pervasive in many
embedded application areas, including telecommunica-
tion line cards, cellular and cordless phones, video pro-
cessing, and automotive real-time control.

The increasing trend toward integrating the number of
intellectual property cores—complex components devel-
oped by a third party—and, in particular, processor
cores, in high-volume application-specific integrated cir-
cuits is irreversible (see http://www.design-reuse.com).
The Economist, for example, forecasted that by the year
2002 the sale of systems containing embedded proces-
sor cores will nearly match that of PCs and thereafter
greatly exceed them.2 Increasingly, such cores are appli-
cation-specific instruction-set processors—that is,
processors whose architecture and instruction set are
customized to a specific application. Compared to more
general-purpose processors, the architecture and

Evolution of design reuse

physical delay values are applied to a data path

optimized for different physical delays.

Jha proposed a technique to address such

problems in the context of data path designs.7

Specifically, he resynthesized the data path

controller using a technique called reclocking;

the controller redesign increased the particular

data path’s reusability by improving its perfor-

mance. Logic synthesis tools can easily synthe-

size controllers using standard-cell libraries. So

the data path and the connectivity between the

controller and the data path are preserved, and

only the controller is redesigned.

Jha defined the reclocking problem as fol-

lows: Given an initial schedule for the operations

in the design’s behavior and the updated

delays—back annotated or from a new library—

a clock width leading to minimal execution time

103May–June 2001

instruction-set specialization of ASIPs yields better
area/performance and power/performance ratios.

Some of the issues posed by field-programmable
core-based designs are similar to those faced in tradi-
tional digital design reuse except that, because of the
extreme complexity of the reusable components (the
processor cores), the supporting technology is stressed
to its limits (the tools are too slow, they malfunction, and
so on). The need for well-defined and documented inter-
faces is one such critical issue.3 At an even more funda-
mental level, field-programmable core-based designs
challenge the paradigm underlying most state-of-the-art
contributions in reuse. Such a paradigm, centered on
function-specific reusable components, does not direct-
ly apply to a programmable component such as a
processor core. Because HDLs let you define technolo-
gy-independent yet function-specific building blocks,
new modeling mechanisms are needed to accommodate
the heterogeneous nature of the main architectural com-
ponents that comprise field-programmable systems.

The previous HDL-based reuse paradigm separated
function from implementation technology. This new sce-
nario requires decoupling, for as long as possible, the
specification of a system’s intended behavior from deci-
sions about the system components’ final implementa-
tion style—for example, function-specific hardware
building blocks and software programs executing on
core processors. The challenges posed by field pro-
grammability are still very new, and their effect on reuse,
as well as on synthesis and verification, are still basical-
ly open research issues. Hardware/software codesign, a
recently created CAD discipline, aims at realizing the full
potential of field-programmable system design.3,4

We have thus far focused on the challenges posed by
SOC design from a system-level perspective—that is, at
the highest level of design abstraction. To compound the
problem, important challenges are also faced during
design planning and, later, at the physical level—the low-
est abstraction level. First of all, the ability to integrate

increasingly complex systems on a single chip is obvi-
ously quite attractive from the point of view of important
physical figures of merit, such as performance and
power consumption. This ability is also advantageous
from a cost and reliability point of view. Unfortunately, the
high chip-transistor densities, which made possible such
SOC designs, are now challenging the very foundations
of top-down, hierarchical design.

Today it is possible to create CMOS transistors with
feature sizes of 180 nm and smaller—now referred to as
deep-submicron technologies. With these advances
toward larger and denser circuits, the interconnect has
emerged as a critical factor limiting performance; most of
the on-chip signal delay will actually occur in the inter-
connect.5 Therefore, in the deep-submicron era, design-
ers can no longer reliably achieve such physical figures
without considering the physical level. This problem is
crucial not only to the end developers of application-spe-
cific systems but also to the actual core developers them-
selves. Another recently created CAD discipline,
timing-driven design (also called design for interconnec-
tivity) focuses on developing mechanisms to reliably esti-
mate the delay of future transistors and interconnects and
to account for all such delays early in the design process.

References
1. E. Girczyc and S. Carlson, “Increasing Design Quality and

Engineering Productivity through Design Reuse,” Proc.

ACM/IEEE Design Automation Conf., ACM Press, New York,

1993, pp. 48-53.

2. “After the PC,” The Economist, 12 Sept. 1998, pp. 79-81.

3. G. De Micheli and M. Sami, eds., Hardware/Software

Codesign, Kluwer Academic Publishers, Norwell, Mass.,1996.

4. D. Gajski et al., Specification and Design of Embedded Sys-

tems, Prentice Hall, Upper Saddle River, N.J., 1994.

5. K. Keutzer and D. Sylvester, “Chip-Level Assembly Is the Key

to DSM Design,” Proc. ACM/IEEE Int’l Workshop Timing Issues

in the Specification and Synthesis of Digital Systems (TAU 99),

ACM Press, New York, 1999, pp. 23-24.

is first determined for the various paths in that

schedule. The controller, a finite state machine

that specifies the operations in each state, is then

rescheduled and resynthesized based on this

new clock width. Jha showed that the optimal

clock width lies on an integer division of the

largest combinational delays of each state.7 The

algorithm for finding optimal clock width has a

runtime complexity of O([n + m]2), where n is

the number of states in the input, and m is the

number of multicycle operations.

Synthesis of interfaces
Passerone, Rowson, and Sangiovanni-

Vicentelli proposed an algorithm for automat-

ic synthesis of interfaces between cores or IP

blocks with different signaling protocols.8 The

synthesized interface converts from one set of

signaling conventions or protocols to another.

The approach’s key assumptions follow:

■ The communication is point to point. Each

module has a set of ports, data, and control,

over which the data transfer occurs.

■ The internal storage provided in the inter-

face is always sufficient to store the entire

data type.

■ The IPs exchanging data are driven by the

same clock—that is, they are fully synchro-

nous. Moreover, the synthesis can consider

only a single data transfer.

The input to the algorithm is a description

of the protocol used by the two modules. The

protocol is the legal sequence of values that

may appear on the ports from the onset to the

end of the data transfer. The output of the pro-

posed algorithm is a finite state machine and

a data path consisting of the interface’s inter-

nal registers.

Ports are first ordered in an arbitrary way.

Those representing buses are bundled togeth-

er and assigned a single identifier, or name. A

protocol symbol is a tuple with ports listed in

assigned order. A protocol is a set of strings of

symbols—a language in the alphabet of all the

values that a symbol may assume. Such a lan-

guage is described through regular expressions.

A synthesis algorithm generates the correct

interface, if one exists, between the two proto-

cols. This interface is a finite state machine that

recognizes a given regular language on the pro-

ducer module (the module sending the data)

and generates a proper string contained in the

regular language of the consumer module (the

module receiving the data).

Industry initiatives and
standardization efforts

The 1999 International Technology Roadmap

for Semiconductors recommended new stan-

dards for system descriptions and portable syn-

thesis library formats.1 The Silicon Integration

Initiative responded by launching several tech-

nology programs actively addressing the need

for such standards. These programs include the

Chip Hierarchical Design System Technical Data

Standard, the Electronic Component Informa-

tion Exchange, and the Delay and Power Calcu-

lation Program (http://www.si2.org).

The System Level Design Language (SLDL) is

an ongoing worldwide standards initiative aimed

at developing an interoperable language envi-

ronment for the specification and system-level

design of single- and multichip silicon-based

embedded systems (see http://www.inmet.

com). Bringing systematic verification and vali-

dation methodologies to the initial phases of SOC

design is crucial. SLDL describes system behav-

ior and design constraints before hardware/soft-

ware partitioning, thus enabling system-level

verification and validation using appropriated

tools and techniques.

The Virtual Socket Interface alliance reflects

yet another important industry-organized

response to the challenges posed by core-

based SOC designs (see http://www.vsi.org).

The objectives of the recently created VSI

alliance include

■ selecting appropriate design representa-

tions—formats—for virtual component

deliverables; and

■ defining required and recommended design

practices for virtual components, covering

logical design, physical design, test, and bus

interfaces.

Bringing the object-oriented modeling para-

digm to system design may also help reduce

Design Reuse

104 IEEE Design & Test of Computers

design complexity. Object-oriented languages

support the so-called reactive computation

model, which is significantly more abstract than

that of typical hardware description languages

(HDLs). This model is useful during early design

stages to verify the correctness of fundamental

high-level design decisions before investing

additional effort in the detailed design. The IEEE

Design Automation Standards Committee

Object Oriented-VHDL study group is working

on a standard for object-oriented VHDL based

on the Objective VHDL extension.9

The irreversible trend toward IP reuse is

clear from the large number of industry contri-

butions, including those from EDA vendors and

ASIC providers, to the annual IP-based work-

shop.10 This workshop addresses both business

IP-protection and technology issues of IP

design, use, and reuse.11,12

Design space layer
We have studied naturally merging reuse

and early design-space exploration using tech-

niques to estimate performance, silicon area,

and other figures of merit; and defined new

reuse library layers to support IP-based designs.

We can abstractly characterize the design

space and, as needed, make the set discrete as

a set of behavioral and structural properties or

features.13 We define properties as higher-level

abstractions—specifically, metadata—to orga-

nize and categorize the myriad design data cre-

ated and manipulated during the design

process. Such properties include

■ behavioral and structural descriptions to

define the structure and intended behavior

of design objects at various levels of design

composition (algorithmic, RTL, logic, and so

on);

■ constraints to specify the design require-

ments on performance, area, and so on; and

■ design decisions or restrictions during con-

ceptual design regarding critical design

issues, such as the system architecture and

the implementation technology for the vari-

ous system components.

Such properties need not be entirely indepen-

dent of one other—for example, the designer

may make a design decision that later proves

to be inconsistent with the performance

requirements of the system under design.

This formalism is not a substitute for any of

the more detailed HDL models discussed previ-

ously. Rather, the formalism rests atop such mod-

els, properly abstracting their content. The

formalism defines a level of abstraction that is

higher than typically provided by HDLs, object-

oriented HDLs, and other behavioral models or

modeling languages. When refining the design,

you should still use the appropriate models and

languages for describing the specific system

behavior (reactive control or computation inten-

sive, deterministic or nondeterministic, and so

on).14 Naturally, you may need to support a cer-

tain degree of model heterogeneity between

model pieces and across several design abstrac-

tion levels. This is particularly true when differ-

ent models can better describe different parts of

the system behavior and constraints.15,16

The design formalism generalizes many key

concepts and principles explored in previous

reuse models and methodologies. Perhaps the

most powerful generalization is specialization,

implemented at each design abstraction level.

Specifically, at each level, the formalism lets

you organize properties or features into a hier-

archy of increasingly specialized design object

classes. This feature is critical for supporting sys-

tematic early design-space exploration of large

design spaces. Therefore, to control complexi-

ty, designers should merge—logically general-

ize—algorithm groups, hardware- and

software-oriented implementation styles, and

so on, during the initial exploration phases. By

doing so, these items become selectable as

viable families of design alternatives, and can

then be incrementally discriminated as the

design process progresses.

Specialization is realized at the property

level. The use of generalized properties—merg-

ing families of alternatives—should precede the

more detailed properties whenever beneficial

for evaluating or determining achievable ranges

of performance, energy consumption, and so

on. Such properties are then organized into a

hierarchy of increasingly specialized classes of

design objects (groups of reusable designs).

This hierarchical organization, the design disci-

105May–June 2001

pline hierarchy,13 formally defines the design

space—the range of all feasible implementa-

tions—of the design objects represented in it.

The discipline hierarchy also provides the

basic schema for specifying, indexing, and iden-

tifying component families residing in reuse

libraries. Such reusable designs—design objects

of a certain class—are thus no longer arbitrari-

ly and monolithically represented and

accessed. Instead, while traversing the disci-

pline hierarchy, designers can discriminate or

select between object families, defining desired

ranges of performance, power consumption,

and so on. Designers can also access single

properties of individual design objects, such as

HDL behavioral or structural models. Thus,

reuse naturally merges with the design method-

ologies themselves. The discipline hierarchy not

only minimizes the need for redesign but also

assists conceptual design and early estimation.

We proposed a new library layer, the design

space layer, to implement discipline hierarchies

and support early design-space exploration and

estimation for IP-based system-level design.17 We

hope to help designers systematically consider

relevant alternative implementations for SOC

architecture’s various components. This library

layer also allows quick and transparent selection

from reuse libraries of IP cores that are good can-

didates for implementing these components.

SPACE LIMITATIONS precluded us from provid-

ing an exhaustive coverage of work on design

reuse. We have thus presented a small set of

representative contributions on several impor-

tant topics, in some cases omitting other rele-

vant work. Moreover, we focused only on

digital design reuse. A relevant topic missing

from this discussion is analog design reuse.

However, the widespread development and

use of analog HDLs began only recently, and

automatic synthesis and process retargetability

are still quite limited in this domain. Systematic

reuse and automation for analog design lags

several generations behind digital design.

Functional reuse, enabled by high-level syn-

thesis and verification tools, has taken digital

design a long way from the technology-depen-

dent, design-from-scratch approach still very

much practiced in analog design. As the levels

of density and heterogeneity increase—requir-

ing consideration of higher design abstraction

levels—reuse, synthesis, verification, and test

hardware and software communities need

once again to work synergistically to respond

to these new challenges with creative and effec-

tive solutions. ■

Acknowledgments
A National Science Foundation CAREER

Award (MIP-9624231), a Texas Higher Education

Coordination Board Grant (ATP-003658-088), and

a donation from Rockwell supported this work.

We thank the reviewers for their valuable com-

ments and suggestions.

References
1. International Technology Roadmap for Semicon-

ductors, Sematech, Austin, Tex., 1999.

2. V. Preis et. al, “Reuse Scenario for the VHDL-

Based Hardware Design Flow,” Proc. European

Design Automation Conf. with EURO-VHDL 95,

IEEE CS Press, Los Alamitos, Calif., 1995,

pp. 464-469.

3. M. Schuetz, “How to Efficiently Build VHDL Test-

benches,” Proc. European Design Automation

Conf. EURO-VHDL 95, IEEE CS Press, Los

Alamitos, Calif., 1995, pp. 554-559.

4. J. Pridmore et al, “Model-Year Architectures for

Rapid Prototyping,” J. VLSI Signal Processing,

vol. 15, no. 1/2, 1997, pp. 83-96.

5. M. Keating and P. Bricaud, Reuse Methodology

Manual for System-on-a-Chip Designs, Kluwer

Academic Publishers, Norwell, Mass., 1998.

6. P. Jha and N. Dutt, “High-Level Library Mapping

for Arithmetic Components,” IEEE Trans. Very

Large Scale Integration (VLSI) Systems, vol. 4,

no. 2, June 1996, pp. 157-169.

7. P. Jha, S. Parameswaran, and N. Dutt, “Reclock-

ing Controllers for Minimum Execution Time,”

IEICE Trans. Fundamentals of Electronics, Com-

munications and Computer Sciences, vol. E78-A,

no. 12, Dec 1995, pp. 1715-1721.

8. R. Passerone, J. Rowson, and A. Sangiovanni-

Vicentelli, “Automatic Synthesis of Interfaces

between Incompatible Protocols,” Proc. 35th

ACM/IEEE Design Automation Conf., ACM Press,

New York, 1998, pp. 8-13.

9. M. Radetzki, W. Putzke-Roming, and W. Nebel,

Design Reuse

106 IEEE Design & Test of Computers

“A Unified Approach to Object-Oriented VHDL,” J.

Information Science and Engineering, vol. 14, no.

3, 1998, pp. 523-545.

10. Proc. Int’l Workshop IP Based Synthesis and Sys-

tem Design, IEEE CS Press, Los Alamitos, Calif.,

1998.

11. A. Kahng et al., “Watermarking Techniques for

Intellectual Property Protection,” Proc. IEEE/ACM

Design Automation Conf., ACM Press, New York,

1998, pp. 190-195.

12. A. Oliveira, “Robust Techniques for Watermarking

Sequential Circuits,” Proc. IEEE/ACM Design

Automation Conf., ACM Press, New York, 1999,

pp. 837-842.

13. M. Jacome and S. Director, “A Formal Basis for

Design Process Planning and Management,”

IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 15, no. 10, Oct. 1996,

pp. 1197-1211.

14. D. Gajski et al., Specification and Design of

Embedded Systems, Prentice Hall, Upper Saddle

River, N.J., 1994.

15. W. Chang, A. Kalavade, and E. Lee, “Effective

Heterogeneous Design and Cosimulation,” Hard-

ware/Software Co-design, G. DeMicheli and M.

Sami, eds., NATO ASI Series vol. 310, Kluwer

Academic Publishers, Norwell, Mass., 1996.

16. E. Lee and A. Sangiovanni-Vincentelli, “A Frame-

work for Comparing Models of Computation,”

IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 17, no. 12, 1998, pp.

1217-1229.

17. H.P. Peixoto et al., “The Design Space Layer:

Supporting Early Design Space Exploration for

Core Based Designs,” Proc. ACM/IEEE Design,

Automation and Test in Europe (DATE 99), ACM

Press, New York, 1999, pp. 676-683.

Margarida F. Jacome is
an associate professor in the
Department of Electrical and
Computer Engineering at the
University of Texas at Austin.
Her research interests include

CAD for hardware/software codesign of embed-
ded systems, retargetable compilation for VLIW
application-specific instruction-set processors,
and IP reuse. Jacome has a BS in electrical engi-
neering and MS in electrical and computer engi-

neering, both from the Technical University of
Lisbon; and a PhD in electrical and computer
engineering from Carnegie Mellon University. She
is a member of the IEEE Computer Society and
the ACM.

Helvio P. Peixoto is a sys-
tems engineer at Intel. His
research interests include
hardware/software codesign
of embedded systems, CAD
algorithms, and operations

research. Peixoto has a BS in computer science
from the Federal University of Uberlandia, Brazil;
MSc in computer science from State University of
Campinas, Brazil; and PhD in electrical and com-
puter engineering from the University of Texas at
Austin.

Direct questions and comments about this
article to Margarida F. Jacome, Electrical and
Computer Engineering Dept., Univ. of Texas at
Austin, Austin, TX 78712-1084; jacome@ece.
utexas.edu.

107May–June 2001

Learn
Something

New
Built-In Self-Test for SOCs

An online tutorial from the

IEEE Computer Society

http://computer.org/
DT-tutorials/BIST

The first step in the

D&T Community Project

